501 research outputs found

    Proteasome Lid Bridges Mitochondrial Stress with Cdc53/Cullin1 NEDDylation Status

    Get PDF
    Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26 S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis

    Risk-Averse Matchings over Uncertain Graph Databases

    Full text link
    A large number of applications such as querying sensor networks, and analyzing protein-protein interaction (PPI) networks, rely on mining uncertain graph and hypergraph databases. In this work we study the following problem: given an uncertain, weighted (hyper)graph, how can we efficiently find a (hyper)matching with high expected reward, and low risk? This problem naturally arises in the context of several important applications, such as online dating, kidney exchanges, and team formation. We introduce a novel formulation for finding matchings with maximum expected reward and bounded risk under a general model of uncertain weighted (hyper)graphs that we introduce in this work. Our model generalizes probabilistic models used in prior work, and captures both continuous and discrete probability distributions, thus allowing to handle privacy related applications that inject appropriately distributed noise to (hyper)edge weights. Given that our optimization problem is NP-hard, we turn our attention to designing efficient approximation algorithms. For the case of uncertain weighted graphs, we provide a 13\frac{1}{3}-approximation algorithm, and a 15\frac{1}{5}-approximation algorithm with near optimal run time. For the case of uncertain weighted hypergraphs, we provide a Ω(1k)\Omega(\frac{1}{k})-approximation algorithm, where kk is the rank of the hypergraph (i.e., any hyperedge includes at most kk nodes), that runs in almost (modulo log factors) linear time. We complement our theoretical results by testing our approximation algorithms on a wide variety of synthetic experiments, where we observe in a controlled setting interesting findings on the trade-off between reward, and risk. We also provide an application of our formulation for providing recommendations of teams that are likely to collaborate, and have high impact.Comment: 25 page

    Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions.

    Get PDF
    We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies

    Phosphoproteomics Screen Reveals Akt Isoform-Specific Signals Linking RNA Processing to Lung Cancer

    Get PDF
    The three Akt isoforms are functionally distinct. Here we show that their phosphoproteomes also differ, suggesting that their functional differences are due to differences in target specificity. One of the top cellular functions differentially regulated by Akt isoforms is RNA processing. IWS1, an RNA processing regulator, is phosphorylated by Akt3 and Akt1 at Ser720/Thr721. The latter is required for the recruitment of SETD2 to the RNA Pol II complex. SETD2 trimethylates histone H3 at K36 during transcription, creating a docking site for MRG15 and PTB. H3K36me3-bound MRG15 and PTB regulate FGFR-2 splicing, which controls tumor growth and invasiveness downstream of IWS1 phosphorylation. Twenty-one of the twenty-four non-small-cell-lung carcinomas we analyzed express IWS1. More importantly, the stoichiometry of IWS1 phosphorylation in these tumors correlates with the FGFR-2 splicing pattern and with Akt phosphorylation and Akt3 expression. These data identify an Akt isoform-dependent regulatory mechanism for RNA processing and demonstrate its role in lung cancer

    SUMO is a pervasive regulator of meiosis

    Get PDF
    Protein modification by SUMO helps orchestrate the elaborate events of meiosis to faithfully produce haploid gametes. To date, only a handful of meiotic SUMO targets have been identified. Here, we delineate a multidimensional SUMO-modified meiotic proteome in budding yeast, identifying 2747 conjugation sites in 775 targets, and defining their relative levels and dynamics. Modified sites cluster in disordered regions and only a minority match consensus motifs. Target identities and modification dynamics imply that SUMOylation regulates all levels of chromosome organization and each step of meiotic prophase I. Execution-point analysis confirms these inferences, revealing functions for SUMO in S-phase, the initiation of recombination, chromosome synapsis and crossing over. K15-linked SUMO chains become prominent as chromosomes synapse and recombine, consistent with roles in these processes. SUMO also modifies ubiquitin, forming hybrid oligomers with potential to modulate ubiquitin signaling. We conclude that SUMO plays diverse and unanticipated roles in regulating meiotic chromosome metabolism

    Hepatitis C virus infects and perturbs liver stem cells

    Get PDF
    Hepatitis C virus (HCV) is the leading cause of death from liver disease. How HCV infection causes lasting liver damage and increases cancer risk remains unclear. Here, we identify bipotent liver stem cells as novel targets for HCV infection, and their erroneous differentiation as the potential cause of impaired liver regeneration and cancer development. We show 3D organoids generated from liver stem cells from actively HCV-infected individuals carry replicating virus and maintain low-grade infection over months. Organoids can be infected with a primary HCV isolate. Virus-inclusive single-cell RNA sequencing uncovered transcriptional reprogramming in HCV+ cells supporting hepatocytic differentiation, cancer stem cell development, and viral replication while stem cell proliferation and interferon signaling are disrupted. Our data add a new pathogenesis mechanism—infection of liver stem cells—to the biology of HCV infection that may explain progressive liver damage and enhanced cancer risk through an altered stem cell state

    S.cerevisiae Complex Function Prediction with Modular Multi-Relational Framework

    Full text link
    Proceeding of: 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2010, Córdoba, Spain, June 1-4, 2010Determining the functions of genes is essential for understanding how the metabolisms work, and for trying to solve their malfunctions. Genes usually work in groups rather than isolated, so functions should be assigned to gene groups and not to individual genes. Moreover, the genetic knowledge has many relations and is very frequently changeable. Thus, a propositional ad-hoc approach is not appropriate to deal with the gene group function prediction domain. We propose the Modular Multi-Relational Framework (MMRF), which faces the problem from a relational and flexible point of view. The MMRF consists of several modules covering all involved domain tasks (grouping, representing and learning using computational prediction techniques). A specific application is described, including a relational representation language, where each module of MMRF is individually instantiated and refined for obtaining a prediction under specific given conditions.This research work has been supported by CICYT, TRA 2007-67374-C02-02 project and by the expert biological knowledge of the Structural Computational Biology Group in Spanish National Cancer Research Centre (CNIO). The authors would like to thank members of Tilde tool developer group in K.U.Leuven for providing their help and many useful suggestions.Publicad

    Network-Free Inference of Knockout Effects in Yeast

    Get PDF
    Perturbation experiments, in which a certain gene is knocked out and the expression levels of other genes are observed, constitute a fundamental step in uncovering the intricate wiring diagrams in the living cell and elucidating the causal roles of genes in signaling and regulation. Here we present a novel framework for analyzing large cohorts of gene knockout experiments and their genome-wide effects on expression levels. We devise clustering-like algorithms that identify groups of genes that behave similarly with respect to the knockout data, and utilize them to predict knockout effects and to annotate physical interactions between proteins as inhibiting or activating. Differing from previous approaches, our prediction approach does not depend on physical network information; the latter is used only for the annotation task. Consequently, it is both more efficient and of wider applicability than previous methods. We evaluate our approach using a large scale collection of gene knockout experiments in yeast, comparing it to the state-of-the-art SPINE algorithm. In cross validation tests, our algorithm exhibits superior prediction accuracy, while at the same time increasing the coverage by over 25-fold. Significant coverage gains are obtained also in the annotation of the physical network

    MCL-CAw: A refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure

    Get PDF
    Abstract Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw.http://deepblue.lib.umich.edu/bitstream/2027.42/78256/1/1471-2105-11-504.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/2/1471-2105-11-504-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/3/1471-2105-11-504-S2.ZIPhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/4/1471-2105-11-504.pdfPeer Reviewe

    Human RNA Polymerase II-Association Factor 1 (hPaf1/PD2) Regulates Histone Methylation and Chromatin Remodeling in Pancreatic Cancer

    Get PDF
    Change in gene expression associated with pancreatic cancer could be attributed to the variation in histone posttranslational modifications leading to subsequent remodeling of the chromatin template during transcription. However, the interconnected network of molecules involved in regulating such processes remains elusive. hPaf1/PD2, a subunit of the human PAF-complex, involved in the regulation of transcriptional elongation has oncogenic potential. Our study explores the possibility that regulation of histone methylation by hPaf1 can contribute towards alteration in gene expression by nucleosomal rearrangement. Here, we show that knockdown of hPaf1/PD2 leads to decreased di- and tri-methylation at histone H3 lysine 4 residues in pancreatic cancer cells. Interestingly, hPaf1/PD2 colocalizes with MLL1 (Mixed Lineage Leukemia 1), a histone methyltransferase that methylates H3K4 residues. Also, a reduction in hPaf1 level resulted in reduced MLL1 expression and a corresponding decrease in the level of CHD1 (Chromohelicase DNA-binding protein 1), an ATPase dependent chromatin remodeling enzyme that specifically binds to H3K4 di and trimethyl marks. hPaf1/PD2 was also found to interact and colocalize with CHD1 in both cytoplasmic and nuclear extracts of pancreatic cancer cells. Further, reduced level of CHD1 localization in the nucleus in hPaf1/PD2 Knockdown cells could be rescued by ectopic expression of hPaf1/PD2. Micrococcal nuclease digestion showed an altered chromatin structure in hPaf1/PD2-KD cells. Overall, our results suggest that hPaf1/PD2 in association with MLL1 regulates methylation of H3K4 residues, as well as interacts and regulates nuclear shuttling of chromatin remodeling protein CHD1, facilitating its function in pancreatic cancer cells
    corecore